DAV首页
数字音视工程网

微信公众号

数字音视工程网

手机DAV

null
null
null
卓华,
招商,
null
null
null
null
null

我的位置:

share

复合人工智能:企业使用AI成功的关键

来源:智联信通        编辑:ZZZ    2024-01-17 08:58:18     加入收藏

复合人工智能(composite AI)是指组合多种类型的人工智能,如生成型、预测型和因果型,以及不同的数据源,如可观察性、安全性和业务事件。

  近日, Dynatrace 发布一份全球报告显示,随着对 AI 的投资不断增加,“复合 AI”将成为企业成功运用AI的关键因素。Dynatrace 指出,尽管 83% 的技术领导者认为 AI 是必不可少的,但 95% 的人认为,如果有其他类型的 AI 来协助,生成式 AI(GenAI)会更有效果。

  该报告认为,企业需要采用一种复合的人工智能方式,也就是说组织要把多种类型的人工智能结合在一起。这些可能包括 GenAI、预测性和/或因果性 AI,以及来自可观察性、安全性和业务事件等不同的数据源。这种方式可以实现更高层次的推理,并让人工智能的输出更加准确、相关和有意义。

  由此可见,人工智能并不是一种简单的技术,它涉及到多种类型、方法、数据和场景,每一种都有其优势和局限。要想充分发挥人工智能的潜力,单一的人工智能技术是不够的,需要将不同的人工智能技术和数据源相结合,以提供更高级的推理,以及更准确、更有意义和更有上下文的人工智能输出。这就是复合人工智能(composite AI)的概念,它是指组合多种类型的人工智能,如生成型、预测型和因果型,以及不同的数据源,如可观察性、安全性和业务事件。复合人工智能是企业成功采用人工智能的关键因素,因为它可以帮助企业解决复杂的问题,提供更有价值的解决方案,以及更好地适应不断变化的环境。

  本文基于Dynatrace的一项全球报告来分析复合人工智能的概念、应用和价值,以及复合人工智能的优势和挑战。目的是为了我们更好地了解复合人工智能的重要性和潜力,以及如何有效地采用复合人工智能,以提升企业的竞争力和创新力。

微信截图_20231225081723.png

  01 复合人工智能的概念

  众所周知,人工智能是一门涉及到计算机科学、数学、统计学、心理学、哲学等多个学科的交叉学科,它让计算机或机器具有类似于人类的智能,如感知、理解、学习、推理、决策、创造等。人工智能的研究和发展已经有了几十年的历史,期间经历了多次的兴衰和变革,形成了多种类型、方法、数据和场景的人工智能技术,每一种都有其优势和局限。

  近来发展迅猛的生成型人工智能(generative AI)是利用深度学习等技术,从数据中生成新的内容,如文本、图像、音频等。生成型人工智能的优势是可以帮助我们创建新的产品和服务,如虚拟助理、个性化推荐、智能内容等。生成型人工智能的局限是可能存在不准确、不合理或不道德的问题,如生成的内容与事实不符、违反常识或伤害他人的感情等。

  预测型人工智能(predictive AI)的发展历史可以追溯到 20 世纪 50 年代,当时出现了第一批统计学习理论和机器学习算法。预测型人工智能利用统计学习等技术,从数据中发现规律和趋势进行分类、回归、聚类等。预测型人工智能的优势是可以帮助我们优化现有的产品和服务,比如性能监控、故障预测、异常检测等。预测型人工智能的局限是预测的结果与实际不符、受到噪声或异常的影响或缺乏可解释性等。

  因果型人工智能(causal AI)是一种利用数据和算法来推断因果关系的人工智能。它可以帮助组织理解数据背后的原因和效果,从而进行更好的决策和干预。因果型人工智能的一些应用领域包括医疗、社会科学、经济学、教育、政策制定等。因果型人工智能的核心概念是因果图,它是一种用节点和箭头表示变量和因果关系的图形模型。因果图可以用来表示数据生成的机制,以及如何通过干预或实验来改变数据的分布。因果图还可以用来回答因果问题,如“如果我做了这个,会发生什么?”或“为什么这个变量会影响那个变量?”

  除了不同类型的人工智能技术,还有不同的数据源,如可观察性、安全性和业务事件。可观察性数据是指与应用程序性能、软件开发和安全实践、IT基础设施和用户体验相关的数据。安全性数据是指与网络安全、数据保护和隐私合规相关的数据。业务事件数据是指与业务流程、交易、客户行为和满意度相关的数据。不同的数据源可以提供不同的信息和价值,也有不同的质量、安全和隐私的要求和挑战。

  复合人工智能是指将不同类型的人工智能技术和数据源相结合,以提供更高级的推理,以及更准确、更有意义和更有上下文的人工智能输出。复合人工智能可以帮助我们解决复杂的问题,提供更有价值的解决方案,以及更好地适应不断变化的环境。复合人工智能的核心是利用不同的人工智能技术和数据源的优势,弥补不同的人工智能技术和数据源的局限,实现人工智能技术和数据源的协同和互补。

微信截图_20231225081908.png

  02 复合人工智能的集成和调整

  复合人工智能的集成和调整是将不同类型的人工智能技术和数据源相结合,以提供更高级的推理,以及更准确、更有意义和更有上下文的人工智能输出。复合人工智能的集成和调整需要考虑多个方面,如人工智能的目标、范围、方法、数据的质量、安全和隐私、以及人工智能的评估和监督等。所以需要一些基本的概念和原则。

  目标是人工智能要解决的问题或实现的功能,如诊断、预测、生成、推荐等。人工智能的目标决定了人工智能的输出的类型、格式和内容,以及人工智能的输出的价值和影响。人工智能的目标应该是明确、具体、可量化和可达成的,以便于人工智能的设计、实现和评估。

  还需要设定要涉及的领域或场景,如医疗、教育、金融、制造等。人工智能的范围决定了人工智能的输入和输出的来源、特点和要求,以及人工智能的输入和输出的复杂性和难度。人工智能的范围应该是适当、合理、可行和可扩展的,以便于人工智能的获取、处理和应用。

  选择的方法是人工智能要采用的技术或算法,如生成型、预测型和因果型人工智能,以及深度学习、统计学习、因果推理等。方法决定了人工智能的输出的质量、可靠性和可解释性,以及人工智能的输出的优势和局限。人工智能的方法应该是合适、有效、创新和可改进的,以便于人工智能的优化、验证和更新。

  数据的质量是指数据的准确性、完整性、一致性、时效性和相关性等。数据的质量影响了人工智能的输出的准确性、合理性和道德性,以及人工智能的输出的信任度和可接受度。数据的质量应该是高、稳、清和新的,以便于人工智能的学习、推理和生成。

  还要考虑数据的安全和隐私,也是数据的保护和合规,包括数据的加密、授权、审计、备份、删除等。数据的安全和隐私影响了人工智能的输出的安全性、合法性和责任性,以及人工智能的输出的风险和后果。数据的安全和隐私应该是强、严、规和法的,以便于人工智能的防范、应对和纠正。

  重要的是人工智能的评估和监督,对人工智能的输出进行检验和改进,包括人工智能的输出的测试、评价、反馈、监控等。人工智能的评估和监督影响了人工智能的输出的效率和效果,以及人工智能的输出的创新和发展。人工智能的评估和监督应该是持续、全面、客观和及时的,以便于人工智能的调整、优化和更新。

  复合人工智能的集成和调整是一个涉及到多个方面的过程,以提供更高级的推理,以及更准确、更有意义和更有上下文的人工智能输出。这是一个需要大量的时间、资源和专业知识,以及高度的协调和合作的过程。

免责声明:本文来源于智联信通,本文仅代表作者个人观点,本站不作任何保证和承诺,若有任何疑问,请与本文作者联系或有侵权行为联系本站删除。
扫一扫关注数字音视工程网公众号

相关阅读related

评论comment

 
验证码:
您还能输入500